
An investigation of r-chunk detector generation

on higher alphabets

Thomas Stibor1, Kpatscha M. Bayarou2, and Claudia Eckert1

1 Department of Computer Science
Darmstadt University of Technology

{stibor,eckert}@sec.informatik.tu-darmstadt.de
2 Fraunhofer-Institute Secure Telecooperation (SIT)

bayarou@sit.fraunhofer.de

Abstract. We propose an algorithm for generating all possible gener-
atable r-chunk detectors, which do not cover any elements in self set S.
In addition, the algorithm data structure is used to estimate the aver-
age number of generatable detectors, dependent on set size S, r-chunk
length r and alphabet size Σ. We show that higher alphabets influence
the number of generatable detectors in a negative manner.

1 Introduction

The biological immune system is responsible for protecting organisms against
disease caused by pathogens and is able to detect and eliminate most pathogens.
The immune system consists of certain types of white blood cells, called lympho-
cytes, that cooperate to detect pathogens and assist in the destruction of those
pathogens. These lymphocytes can be thought of as detectors which recognize
pathogens and destroy them, provided a binding threshold between lymphocyte
and pathogen is reached. Detectors can also recognize self molecules3, which
results in autoimmune disease and can lead to death. To avoid this reaction,
the immune system eliminates through a process called negative selection, those
lymphocytes (detectors) which bind to self molecules.
From the view of computer scientists, the immune system provides a rich

set of methods, ideas, principles and properties to solve computational problems
[1]. A short list of immune system properties that are highly appealing from a
computational perspective are :

– Pattern recognition: the immune system is capable of recognizing and dis-
tinguishing between self and foreign molecules.

– Distributed detection: the detectors used by the immune system are small,
efficient, highly distributed and not subject to centralized control or coordi-
nation.

– Anomaly detection: the immune system can detect and react to pathogens
that the body has never before encountered.

3 produced naturally in the body

Artificial immune systems (AIS) abstract these biological methods and principles
and apply them to problem oriented computational paradigms. Application of
artificial immune systems are manifold (computer network security, data analy-
sis, machine learning, search and optimization methods). In this paper we focus
on anomaly detection, especially the analysis of detector generation.

2 Negative Selection Algorithm

Forrest et al. [3] developed the negative selection algorithm based on the negative
selection immune system process. The algorithm operates on a representation
space U , self set S and non-self set N with

U = S ∪N and S ∩N = ∅.

and returns a detector set D which recognizes elements from U \S. The negative
selection algorithm is summarized in the following steps.

1. Define self as a set S of elements of length l in representation space U .
2. Generate a set D of detectors, such that each fails to match any element in
S.

3. Monitor S for changes by continually matching the detectors in D against
S.

This principle is adaptable to nearly all computer systems, where normal system
behavior (self) is appropriately mapped in self set S. A deviate from S can be
recognized through the generated detectors and classified as anomaly (non-self).
The problem is to generate the smallest possible detector set, which recognizes
a maximum part of N . More precisely, a perfect detector set Dperfect contains a
minimal number of detectors which recognize all elements in U \ S. D’haesleer
[4] has shown, that Dperfect must be approximately the same size (in bits) as the
self set S. Another problem arises in commonly occurring distinct self elements,
which induces so called holes. Holes are elements from N , for which no detectors
can be generated and, therefore can not be recognized and classified as non-self
elements.

2.1 r-chunk Matching

The r-chunk matching rule was first proposed by Balthrop et al. [5] and is an
improved variant of the r-contiguous matching rule developed by Percus et al.
[6]. The r-contiguous matching rule was one of the earliest rules which focused
on the biological immune system as a model and abstracts the binding between
antibody and antigen [6]. Informally, two elements, with the same length, match
under r-contiguous rule, if at least r contiguous characters are identical. This
matching rule was theoretically and practically investigated in [4,7,8]. Gonzalez
et al. [8] has compared the matching performance most of the well-known (in
AIS literature) matching rules. He experienced that the r-chunk matching rule

achieves the highest matching performance compared with the other matching
rules over the binary alphabet. Since matching performance is strongly influenced
by the number of generatable detectors, we focus on the number of generatable
r-chunk detectors over arbitrary alphabet sizes.

Given a space UΣl , which contains all elements of length l over an alphabet
Σ and a detector set D ⊂ UΣl .

Definition 1. An element e ∈ UΣl with e = e1e2 . . . el and detector d ∈ D
with d = (p, d1d2 . . . dr), with r ≤ l, p ≤ l − r + 1 match with r-chunk rule iff
ei = di for i = p, . . . , p+ r − 1.

Informally, element and detector match if, at position p, there is a sequence of
length r where all the characters are identical.

3 Detector Generation Algorithms

We propose an algorithm called BUILD-RCHUNK-DETECTORS which gener-
ates all possible r-chunk detectors, which do not cover any element in S. This
algorithm uses a hashtable H data structure to insert, delete and search effi-
ciently for boolean values which are indexed with a key composite of r-chunk
string concatenated with detector position p. Since the algorithm needs all keys
from [0..|Σ|r] concatenated with p, H contains p|Σ|r elements, where r is the
r − chunk length. In addition, the hashtable is an appropriate data structure
to analyse randomized operations. Figure 1 shows the hashtable with generated
detectors for alphabet Σ = {0, 1}. The symbol | means concatenation of two
elements, symbol || means logical value true or false.

BUILD-RCHUNK-DETECTORS(r, l, S,Σ)
1 for i← 0 to |Σ|r − 1 / ∗ init phase ∗ /
2 do for p← 0 to l − r
3 do H.put(i|p, true)
4 for each s in S / ∗ label phase ∗ /
5 do c← 0
6 while r + c < length[s]
7 do rchunk ← substring[s, r + c]
8 H.put(rchunk|c, false)
9 c← c+ 1
10 for i← 0 to |Σ|r − 1 / ∗ find phase ∗ /
11 do for p← 0 to l − r
12 do C ← H.get(i|p)
13 if C = true
14 then

15 D[k]← H.get(i|p)
16 k ← k + 1
17 return D

The BUILD-RCHUNK-DETECTORS algorithm needs four input parameters,
r-chunk length r, self set S, element length l, alphabet Σ and outputs an array
of all possible detectors, which do not match self elements. The algorithm is
divided into three phases. The initial phase (line 1 to 3) initializes all keys with
the boolean value true. The label phase (line 4 to 9) iterates with a length r
sliding window4 over all self elements s and replaces the hashtable boolean value,
whose key matched the r-chunk with false. The last phase named find (line 10 to
17), iterates over all hashtable elements and extracts those, which have a boolean
value of true. The returned array D contains all possible detectors which do not
cover any self element.

true || false

true || false

true || false

value
boolean

000...00 | p

000...01 | p

111...11 | p

binary key

PSfrag replacements

p · 2r

Fig. 1. Hashtable H configuration with Σ = {0, 1}

The space complexity is determinated by r and position p, where p is negligi-
ble. The hashtable uses keys of length r and, therefore the total space size results
in O(|Σ|r). The runtime complexity is determinated by r, S and the self elements
length l. The three phases need O((l− r) · |Σ|r) +O(|S| · (l− r + 1)) +O(|Σ|r)
time to generate all possible detectors. The total runtime complexity results in
O(|Σ|r) which runs exponential in the length r. D’haesleer et al. [7] has proposed
an algorithm to generate r-contiguous detectors with nearly equal runtime com-
plexity as our proposed algorithm. He chooses r such that |S| = O(|Σ|r) and
estimated the total runtime complexity as linear in |S|. This estimation is only
acceptable, if |S| and r are suitable chosen.

4 substring operation

4 Detector Generation Analysis

In this section we estimate the average number of generatable r-chunk detectors.
This number is determinated by the cardinality |S|, the element length l of S
and the r-chunk length r. We use the hashtable H which was defined in the
algorithm to estimate the average number of generatable detectors.

Proposition 1. Given a universe UΣl which contains all elements of length l
over the alphabet Σ, r-chunks length r and a self set S randomly drawn from
UΣl , the average number of detectors which do not cover any element in S is

(

1−
1

(l − r + 1) · |Σ|r

)|S|·(l−r+1)

· (l − r + 1) · |Σ|r

Proof. The hashtable H contains p|Σ|r elements. We draw n = |S| · (l − r + 1)
elements and want to find zero labeled false elements. The probability distribu-

tion therefore is P (k) =
(

n
k

)

qk ·(1−q)n−k. For k = 0 and q =
(

(l−r+1) · |Σ|r
)−1

this results in
(

1−
1

(l − r + 1) · |Σ|r

)|S|·(l−r+1)

and the total average number results in

|D| =

(

1−
1

(l − r + 1) · |Σ|r

)|S|·(l−r+1)

· (l − r + 1) · |Σ|r (1)

ut

As it can be seen, term (1) strongly depends on |S| and |Σ|r. Increasing |S|,
implies a decreasing detector set size, where |Σ|r also influences the amount of
generatable detectors.

4.1 Number of Generatable Detectors

We investigate the parameter dependencies of |Σ|, |S|, r and their effects on
the number of generatable detectors. Therefore, we plot term (1) with small
computable parameters, since term (1) increases exponentially. We choose l =
16, r = 8, . . . , l − 1, |Σ| = 2, 3, 4, 5 and select S randomly from UΣl with a
percentage proportion of |S|/|UΣl | = 0%, . . . , 25% of total universe U

Σ
l . In the

plots the ordinate depicts the amount of generatable detectors in proportion
to the total universe. Since the universe and the amount of detectors increased
with higher alphabets we represent the relative number between |D| and |UΣl |.
As it can be seen in figure 2(a) to 2(c), detectors can be only generated for
|Σ| = 2 and |S|/|UΣl | < 5%. For higher alphabets it is not possible to generate

detectors for r ≤ 10. This phenomenon results from the r-chunk matching rule,
which is not suitable for higher alphabets, since increased alphabet sizes influence
the amount of generatable detectors. As it can be seen in figures 2(a) to 2(h),
most detectors are generatable for an alphabet of size two. It is clear that these
detectors recognize less elements from UΣl than higher alphabets detectors for
same value of l and r. But, as we see in figures 2(a) to 2(h), increasing the
alphabet size implies less generatable detectors for a fixed r. To generate a
destined amount of detectors for arbitrary alphabet sizes, the r-chunk length
must lie near l, which results in larger space complexity. If |Σ| > 5 and r > 16 it
is not feasible to generate all possible detectors, due to the large space complexity.

5 Conclusion and Future work

We have proposed and analyzed an algorithm which generates all possible r-
chunk detectors over arbitrary alphabet sizes. In addition, an average analysis
was shown, to estimate the number of generatable detectors, by given parameters
l, r, S and Σ. It has been shown, that the alphabet size has a strong influence
on the number of generatable detectors. For the r-chunk matching rule, the al-
phabet size two achieves the highest number of generatable detectors. Higher
alphabets bias the amount of generatable detectors in proportion to total uni-
verse. To generate a sufficiently large number of detectors r must lie near l and
this results in an infeasible space complexity. So far, the total number of gener-
atable detectors was not considered in terms of non-self cover. The further work
will be to investigate the total non-self cover on arbitrary alphabet sizes.

Acknowledgments

The authors are grateful to Bob Lindsey for his comments and annotations.

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(a) r = 8

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(b) r = 9

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(c) r = 10

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(d) r = 11

Fig. 2. Plots of term (1), with l = 16, r = {8, 9, 10, 11} and |Σ| = {2, 3, 4, 5}

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(e) r = 12

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(f) r = 13

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3

|Σ| = 4

|Σ| = 5

(g) r = 14

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

PSfrag replacements

|S|

|UΣ
l
|

|D|

|UΣ
l
|

|Σ| = 2

|Σ| = 3|Σ| = 4

|Σ| = 5

(h) r = 15

Fig. 2. Plots of term (1), with l = 16, r = {12, 13, 14, 15} and |Σ| = {2, 3, 4, 5}

References

1. Leandro N. de Castro, Jonathan Timmis: Artificial Immune Systems: A New Com-
putational Intelligence Approach. Springer-Verlag (2002)

2. Anil Somayaji, Steven Hofmeyr, Stephanie Forrest: Principles of a computer immune
system. In: Meeting on New Security Paradigms, 23-26 Sept. 1997, Langdale, UK,
(New York, NY, USA : ACM, 1998) 75–82

3. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, Oakland, CA, IEEE Computer Society Press (1994) 202–212

4. D’haeseleer, P.: An immunological approach to change detection: Theoretical results.
In: Proceedings of the 9th IEEE Computer Security Foundations Workshop, IEEE
Computer Society Press (1996)

5. Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and generalization
in an artificial immune system. In: GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, New York, Morgan Kaufmann Publishers
(2002) 3–10

6. Jerome K. Percus, Ora E. Percus, Alan S. Perelson: Predicting the Size of the
T-Cell Receptor and Antibody Combining Region from Consideration of Efficient
Self-Nonself Discrimination. Proceedings of National Academy of Sciences USA 90

(1993) 1691–1695
7. P. D’haeseleer, S. Forrest, P. Helman: An immunological approach to change detec-
tion: algorithms, analysis, and implications, Proceedings of the 1996 IEEE Sympo-
sium on Computer Security and Privacy (1996)

8. F. Gonzalez, D. Dasgupta, J. Gomez: The effect of binary matching rules in negative
selection. In: Genetic and Evolutionary Computation Conference. (2003)

